
ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

The Data Access Protocol — DAP 2.0

James Gallagher, Nathan Potter, Tom Sgouros, Steve Hankin, Glenn Flierl

Status of this Memo

This is a description of a Proposed ESE Community Standard

Distribution of this Proposed ESE Community Standard is unlimited.

Change Explanation

004.0.05, 17 Jan 2005, Incorporated changes from reviewers; specifically, changes suggested by Benno Blu-
menthal and Ruixin Yang.
004.0.04, 20 Dec. 2004, Incorporated changes suggested by reviewers. Specifically: Changes to the descrip-
tion of the binary data format due to experience at GMU; Changes to the required fields to support HTTP/1.1
caching and; Notational corrections for the Array, Grid and Sequence types.
004.0.03, 13 Sept. 2004, Editorial changes
004.0.02, 6 Aug. 2004, Editorial changes
004.0.01, 28 June 2004, Added Authors section

Copyright c© NASA, 2004. All Rights Reserved.

Abstract

This document defines the OPeNDAP Data Access Protocol (DAP), a data transmission protocol designed
specifically for science data. The protocol relies on the widely used and stable HTTP and MIME standards,
and provides data types to accommodate gridded data, relational data, and time series, as well as allowing users
to define their own data types.

1

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Contents

1 Introduction . 3
1.1 Motivation for Proposing Standardization . 4
1.2 Requirements . 4

2 Overall Operation . 4
2.1 Data Representation . 6

3 Characterization of a Data Source . 6
3.1 Variables . 6
3.2 Atomic variables . 7

3.2.1 Integer types . 7
3.2.2 Floating point types . 7
3.2.3 String types . 8
3.2.4 A note regarding implementation of the atomic types 8

3.3 Constructor variables . 9
3.3.1 Array . 9
3.3.2 Structure . 9
3.3.3 Grid . 10
3.3.4 Sequence . 10

3.4 Attributes . 11
3.5 Attribute Structures . 12
3.6 Attribute organization . 12

4 Constraint Expressions . 12
4.1 Limiting data by type and by value . 12

4.1.1 Projections . 13
4.1.2 Selections . 15
4.1.3 Server Functions . 16

4.2 Data Type Transformation Through Constraints . 17

5 Names . 17
5.1 Escaping characters in names . 17
5.2 Constructor variable names . 18
5.3 Fully Qualified Names . 18

5.3.1 Variable Names . 18
5.3.2 Attribute Names . 18

6 Requests . 19
6.1 URL Syntax . 19

6.1.1 Constraint expressions . 20
6.2 Request Headers . 21

6.2.1 Accept-Encoding . 21
6.2.2 Host . 21
6.2.3 User-Agent . 21

7 Responses . 22
7.1 Response Headers . 22

2

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

7.1.1 Content-Description . 22
7.1.2 Content-Encoding . 22
7.1.3 Content-Type . 22
7.1.4 Support for HTTP/1.1 caching . 23
7.1.5 Server . 23
7.1.6 WWW-Authentication . 23
7.1.7 XDODS-Server . 24

7.2 Response Bodies . 24
7.2.1 DAS . 24
7.2.2 DDS . 25
7.2.3 DataDDS . 28
7.2.4 Error . 29
7.2.5 Version . 29
7.2.6 Help . 30

7.3 Encoding Values . 30
7.3.1 Atomic types . 31
7.3.2 Constructor types . 31

8 Examples . 33
8.1 Simple request . 33
8.2 Grid . 34
8.3 Sequence . 36

References . 39

Authors . 40

Appendices

A Notational Conventions and Generic Grammar . 41
A.1 Augmented BNF . 41
A.2 Basic Rules . 42

B Acronyms and Abbreviations . 44

C Errata . 44

1 Introduction

This specification defines the protocol referred to as the Data Access Protocol, version 2.0 (“DAP/2.0”). In this
document ‘DAP’ refers to DAP/2.0 unless otherwise noted.

The Data Access Protocol (DAP) is a protocol for access to data organized as name-datatype-value tuples. It
is particularly suited to accesses by a client computer to data stored on remote (server) computers which are
networked to the client computer. The protocol has been used by the Distributed Oceanographic Data System
since 1995[11] and subsequently by many other projects and groups.

While the name-datatype-value model is a nearly universal conceptual organization of data, the actual organiza-
tion of data takes nearly as many forms as there are individual collections because there are many different file

3

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

formats, APIs and file/directory organizations used to house data. The DAP was designed to hide the implemen-
tation of different collections of data behind a simple language-like interface based on the name-datatype-value
conceptual model.

1.1 Motivation for Proposing Standardization

The DAP and its associated software components (data servers and client libraries) form the foundation of the
National Virtual Ocean Data System (NVODS). NVODS was developed as a system that facilitates access to
oceanographic data and data products via the Internet, freeing clients (users) from considerations of: where
the data are stored; the format or data management structure under which they are stored; and (to a significant
degree) the size of the database. NVODS (formerly known as the ‘Virtual Ocean Data Hub’ – VODHub)
was created under a 1999 Broad Agency Announcement (BAA) issued by the National Ocean Partnership
Program. The concept of the VODHub is to be “a key element of the full community-based ‘system’ to
broaden and improve access to ocean data...” The resulting NVODS is also planned for use in the Integrated
Ocean Observing System.

Although the DAP was originally developed by and for the oceanographic community it has been adopted by
a number of meteorological and climate groups as well and today is extensively used in all three communities
- climate, oceanography and meteorology. SEEDS standardization of the DAP will help to accelerate its adop-
tion within these three communities, both through an increase in developers writing to the specification and
through an increase in those providing their data via the protocol. This will be of direct benefit to each of the
communities individually, and more importantly it will provide the data interoperability required by researchers
interested in interdisciplinary problems.

It is important to stress the discipline neutrality of the DAP and the relationship between this and adoption of
the DAP in disciplines other than the Earth sciences. First, because the DAP is agnostic as relates to discipline,
it can be used across the very broad range of data types encountered in oceanography - biological, chemical,
physical and geological. Oceanography may well be unique in this regard, at least within the sub-disciplines
of Earth Science. But of particular interest here, is that there is nothing that constrains the use of the DAP to
the Earth sciences. For example, groups in the solar physics community have adopted the DAP for their use
and proposals are under consideration in other areas of space physics. By standardizing the DAP for the Earth
sciences we hope that this will provide an impetus for other disciplines to adopt it as well.

1.2 Requirements

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY” and “OPTIONAL” in this document are to be interpreted as described in
RFC 2119 [3].

2 Overall Operation

The DAP is a stateless protocol that governs clients making requests from servers, and servers issuing responses
to those requests. This section provides an overview of the requests and responses (i.e. the messages) which
DAP-compliant software MUST support. These messages are used to request information about a server and
data made accessible by that server, as well as requesting data values themselves.

The DAP 2.0 uses HyperText Transfer Protocol (HTTP) as a transport protocol.

4

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

The table below provides a description of the DAP messages. The precise details of the requests and responses
are described in Section 6 (page 19) and Section 7 (page 22) . A server MUST be able to provide the responses
outlined in Table 1. A server MAY support additional request-response pairs.

Table 1: DAP Requests and Responses
Request Response
DDS DDS or Error
DAS DAS or Error
DataDDS DataDDS or Error
Server version Version information as text
Help Help text describing all request-response

pairs

The DAP uses three responses to represent a data source. Two of these responses, the Dataset Descriptor
Structure (DDS) and Dataset Attribute Structure (DAS), characterize the variables, their datatypes, names and
atributes. The third response, the Data Dataset Descriptor Structure (DataDDS), holds data values along with
name and datatype information.

The DAP returns error information using an Error response. If a request for any of the three basic responses
cannot be returned, an Error response is returned in its place.

The three responses (DAS, DDS and DataDDS) are complete in and of themselves so that, for example, the
data response can be used by a client without ever requesting either of the two other responses. In many cases,
client programs will request the DAS and DDS before requesting the DataDDS, but there is no requirement
they do so and no server SHALL require that behavior on the part of clients.

NOTE: The first implementation of the DAP was written in C++ and the three basic responses correspond
with objects in that implementation. For this reason these responses are referred to as ‘objects’ in
some of the DAP documentation. In some cases it is easier to think of these responses as objects
and, in those cases, we will use that term in this paper, too. See Section 7 (page 22) for a
discussion of the object/response duality.

Operationally, a DAP client sends a request to a server using HTTP. The request consists of a HTTP GET
request method, a Uniform Resource Identifier (URI) [2] that encodes information specific to the DAP (see
Section 6.1 on page 19) and an HTTP protocol version number followed by a MIME-like message containing
various headers that further describe the request. In practice, DAP clients typically use a third-party library
implementation of HTTP/1.1 so the GET request, URI and HTTP version information are hidden from the
client; it sees only the DAP Uniform Resource Locator (URL) and some of the request headers. The DAP server
responds with a status line that includes the HTTP protocol version and an error or success code, followed by
a MIME-like message containing information about the response and the response itself. The DAP response is
the payload of the MIME-like HTTP response.

In addition to these data objects, a DAP server MAY provide additional “services” which clients may find
useful. For example, many DAP-compliant servers provide an HTML-formatted representations of a data
source’s structure and a way to get data represented in CSV-style ASCII tables. These additional services are
not described in this document, but are instead to be described in ESE Technical Notes.

5

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

2.1 Data Representation

Data can be an elusive concept. Data may exist in some storage format on some disk somewhere, on paper
somewhere else, in active memory on some server, or transmitted along some wire between two computers.
All these can still represent the same data. That is, there is an important distinction to be made between the
data and its representation. The data consist of numbers: abstract entities that usually represent measurements
of something, somewhere. Data also consist of the relationships between those numbers, as when one number
defines a time at which some quantity was measured.

The abstract, platonic existence of data is in contrast to its concrete representation, which is how we manipulate
and store it. Data can be stored as BCD numbers in a file on a disk, or as twos-complement integers in the
memory of some computer, or as numbers printed on a page. It can be stored in netCDF, HDF, JGOFS, a
relational database and any number of other digital storage forms.

The DAP specifies a particular representation of data, to be used in transmitting that data from one computer
to another. This representation of some data is sometimes referred to as the persistent representation1 of that
data, to distinguish it from the representations used in some computer’s memory. The DAP standard outlined
in this document has nothing at all to say about how data is stored or represented on either the sending or the
receiving computer. The DAP transmission format is completely independent of these details.

3 Characterization of a Data Source

The DAP characterizes a data source as a collection of variables. Each variable consists of a name, a type, a
value, and a collection of Attributes. Attributes, in turn, are themselves composed of a name, a type, and a value
(Section 3.4 on page 11). The distinction between information in a variable and in an Attribute is somewhat
arbitrary. However, the intention is that Attributes hold information that aids in the interpretation of data held
in a variable.2 Variables, on the other hand, hold the primary content of a data source.

3.1 Variables

Each variable in a data source MUST have a name, a type and one or more values. Using just this information
and armed with an understanding of the definition of the DAP data types, a program can read any or all of
the information from a data source. The names and types of a data source’s variables constitute its syntactic
metadata [4].

Each variable MAY have one or more Attributes associated with it. For information about Attributes, see
Section 3.4 (page 11) .

The DAP variables come in several different types. There are several atomic types, the basic indivisible types
representing integers, floating point numbers and the like, and four constructor types (also called container
types) which are flexible collections of other variables. Constructor types may contain both atomic variable
types as well as other constructor types.

1We use the term ‘persistent representation’ instead of the term ‘on-the-wire representation’ because this representation of values is
often produced by creating a document which is then transmitted but could, just as easily, be stored in a file system, data base, et c., for
later retrieval and transformed back into the binary information which resided in the computer’s memory. In practice, the on-the-wire and
persistent representations are one and the same, but technically the persistent representation can be used for other purposes than network
transmission.

2Attributes appear in many data storage systems such as netCDF[14], HDF4[12] and HDF5[13]. They also appear under the moniker
‘property’ in Common Lisp[15].

6

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

There is an important distinction to be made here: variables exist in files on a server’s disks in some format,
or in a client’s active memory in possibly another format. The DAP does not have anything to say about these
formats. The DAP defines, for each data type described in this document, a persistent representation, which is
the information actually communicated between a DAP servers and DAP clients. The persistent representation
consists of two parts: the declaration of the type and the encoding of its value(s). For a description of the
persistent representation see Section 7 (page 22) .

The next two sections describe the abstractions that constitute the variable type menagerie: the range of values
and the kind of data each type can represent.

3.2 Atomic variables

As their name suggests, atomic data types are indivisible. There are no constraint expression operators that can
be used to request part of an instance of one of these types (Section 4 on page 12). Atomic variables are used
to store integers, real numbers, strings and URLs. There are three families of atomic types, with each family
containing one or more variation:

• Integer

• Floating-point types

• String types

3.2.1 Integer types

The integer types are summarized in Table 2. Each of the types is loosely based on the corresponding data type
in ANSI C [18]. However, the DAP, unlike ANSI C, does specify the bit-size of each of the integer types. This
is done so that when values are transfered between machines they will be held in the same type of variable, at
least within the limits of the software that implements the DAP.

Table 2: The DAP Integer Data types.

name description range
Byte 8-bit unsigned char 0 to 28 − 1
Int16 16-bit signed short integer -215 to 215 − 1
Uint16 16-bit unsigned short integer 0 to 216 − 1
Int32 32-bit signed integer -231 to 231 − 1
Uint32 32-bit unsigned integer 0 to 232 − 1

3.2.2 Floating point types

The floating point data types are summarized in Table 3. The two floating point data types use IEEE 754 [19]
to represent values. The two types correspond to ANSI C’s float and double data types.

7

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Table 3: The DAP Floating Point Data types.

name description range
Float32 IEEE 32-bit floating point

[19]
±1.175494351 × 10−38 to
±3.402823466× 1038

Float64 IEEE 64-bit floating point ±2.2250738585072014 × 10−308 to
±1.7976931348623157× 10308

3.2.3 String types

The two string data types are summarized in Table 4. The first is a simple string type corresponding to the
ANSI C notion of a string: a series of US-ASCII characters each represented in a single byte.

String-type values are limited to 32767 bytes.

The DAP also provides a URL data type which is the same as String except that it MUST be limited to standard
(7-bit) US-ASCII characters, due to the limitations of the syntax of Internet URLs[2], and has the specific
meaning of a pointer to some WWW resource.

In DAP applications URL is usually used to refer to another data source, in a manner reminiscent of a pointer.

Strings are individually sized. This means that in constructor data types containing multiple instances of some
String, such as Sequences and Arrays, successive instances of that String MAY be of different sizes.

See Section 7.3.1 (page 31) for other details of the persistent representation of Strings.

Table 4: The DAP String data types.

name description
String a series of US-ASCII characters.
URL a series of US-ASCII characters with the restrictions

specified in IETF RFC 2396 [2]

3.2.4 A note regarding implementation of the atomic types

When implementing the DAP, it is important to match information in a data source or read from a DAP response
to the local data type which best fits those data. In some cases an exact match may not be possible. For example
Java lacks unsigned integer types[1]. Implementations faced with such limitations MUST ensure that clients
will be able to retrieve the full range of values from the data source. As a practical consideration, this may be
implemented by hiding the variable in question or returning an error.

If a variable is automatically hidden (i.e. the server analyzes the data source and determines that a particular
variable cannot be represented correctly and automatically removes it from those variables made accessible
using the DAP) this MUST be noted by adding a global Attribute to the data source indicating this has taken
place. The note MUST include the name of the variable(s) and the reason(s) for their exclusion. If a variable is
removed by a human, this Attribute is OPTIONAL.

8

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

3.3 Constructor variables

The constructor types are assembled from collections of other variables. A constructor type MAY contain both
atomic and constructor types. In principle, there are no restrictions on the number of levels or types of nesting
of the constructor tyes. However, the Grid type imposes some limits on the types it may contain (Section 3.3.3
on page 10).

There are four constructor data types:

• Array

• Structure

• Grid

• Sequence

3.3.1 Array

An Array is a one-dimensional indexed data structure similar to that defined by ANSI C. An Array’s member
variable MAY be of any DAP data type. Array indexes MUST start at zero.

Multidimensional Arrays are defined as Arrays of Arrays. Multi-dimensional Arrays MUST be stored in row-
major order (as is the case with ANSI C). The size of each Array’s dimensions MUST be given. The total
number of elements in an Array MUST NOT exceed 231 − 1 (2147483647). There is no prescribed limit on
the number of dimensions an Array may have except that the foregoing limit on the total number of elements
MUST NOT be exceeded.

Each dimension of an Array MAY also be named.

The number of elements in an Array is fixed as that given by the size(s) of its dimension(s).

If you need a data structure which has varying row lengths or an indeterminate number of rows, consider a
Sequence of Sequences or a Sequence of Arrays. A Sequence of Sequences can represent data with varying
row lengths, and while a Sequence of Arrays MUST have Arrays of the same length in each instance of the
Sequence, the total length of the Sequence is indeterminate. See Section 3.3.4 (page 10) .

3.3.2 Structure

A Structure groups variables so that the collection can be manipulated as a single item. The Structure’s mem-
ber variables MAY be of any type, including other constructor types. The order of items in the Structure is
significant only in relation to the persistent representation of that Structure.

There is a special case of the Structure data type, called Dataset. This is the container that encompasses all the
variables provided in some data source.

9

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

3.3.3 Grid

A Grid is a special case of a Structure, used to supply information to aid in the interpretation of Arrays. A Grid
sets up an association between a target Array and a collection of map vectors.

A Grid is an association of an N dimensional Array with N vectors (map vectors), each of which MUST have
the same number of elements and the same name as the corresponding dimension of the Array. Each vector is
used to map indexes of one of the Array’s dimensions to a set of values which are normally non-integer (e.g.
floating point values).

Schematically, a two-dimensional Grid is the following:[
x0 x1 x2 · · · xn

]
y0

y1

y2

...
ym

z00 z01 z02 · · · z0n

z10 z11 z12 · · · z1n

z20 z21 z22 · · · z2n

...
...

...
. . .

...
zm0 zm1 zm2 · · · zmn

Each column of the z Array corresponds to an entry in the x map vector, and each row of z corresponds to
some y value. So, for example, the data value at z42,33 corresponds to the values y42 and x33.

For example, a geo-referenced Grid might have map vectors that represent the longitude and latitude of each
row, so that if you know that the twelfth value of the longitude array is -54, you know that all the values in the
twelfth column correspond to longitude 54 degrees west.

The maps MUST be vectors of atomic types.3

3.3.4 Sequence

A Sequence can best be described as an ordered collection of zero or more Structures. Each instance in the
series consists of the same set of variables, but contains different values.

The semantics of the Sequence data type are very close to those of a table in a relational database. You can
think of the instances in a Sequence as rows in a traditional relational table. OPeNDAP servers that serve data
from a DBMS like Oracle or mySQL use Sequences to reflect the structure of their data.

A Sequence S can be represented as:

s00 s01 · · · s0n

s10 s11 · · · s1n

...
...

...
si0 si1 · · · sin

...
...

...
...

3This restriction has been put in place to keep writing general clients tractable. If the set of data types in a Grid’s map Arrays is allowed
to be a Sequence, for example, any general client would have to be capable of processing that data type in a response. Such a client would
be very hard to build.

10

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Where each s0 · · · sn entry represents a set of DAP variables, and the collection of such entries constitutes the
Sequence. Every entry of Sequence S MUST have the same number, order, and type of variables. If s00 is
a Float64, then all the si0 values MUST also be Float64 variables. Similarly, in a Sequence which contains
an Array or Structure, each instance of the Array or Structure MUST be the same size. However, a Sequence
MAY contain a Sequence and each instance of the interior Sequence MAY have a different number of entries.

Unlike an Array, a Sequence has no explicit size.

Though the semantics of Sequences places limitations on the kinds of requests a client may make of a server,
once the Sequence has been retrieved, a client program may reference it in any way desired. The DAP de-
fines the persistent representation of data types, and the interaction between client and server (which includes
what kinds of requests can be made for what kind of variables), but the DAP does not specify the internal
implementation of the data types for any client or server.

3.4 Attributes

Attributes are used to associate semantic metadata with the variables in a data source. Attributes are similar
to variables in their range of types and values, except that both are somewhat limited when compared to those
for variables. Attributes are encoded using the DAS response, and the relationship of that to the DDS response
places some extra restrictions on attributes (See Section 7.2.1 on page 24).

Each variable in a data source MAY have Attributes associated with it (called variable attributes) and the entire
Dataset (see Section 3.3.2 on page 9) MAY itself have Attributes, called global Attributes .

While the DAP does not require any particular Attributes, some may be required by various metadata conven-
tions. The semantic metadata for a data source comprises the Attributes associated with that data source and its
variables [4]. Thus, Attributes provide a mechanism by which semantic metadata may be represented without
prescribing that a data source use a particular semantic metadata convention or standard.

The data model for Attributes is somewhat simpler than that for variables. An Attribute’s type MUST either be
a Structure or one of the atomic types listed below. If the type of the Attribute is one of the atomic types, the
value MAY be either scalar or one-dimensional Array. Attributes MAY NOT be multi-dimensional arrays.

If an attribute in a particular data source (e.g. an HDF5 file) is a multi-dimension Array, it is suggested that
the Attribute be promoted to a variable and that a new Attribute be created for that variable which describes the
promotion. This fits the paradigm of remote access better since the multi-dimensional array information would
then be accessed with a constraint expression. Since constraint expressions can only be applied to variables, it
makes sense to promote such data to a variable.

An Attribute’s value MAY be any of the following atomic types:

• Byte

• Int16

• UInt16

• Int32

• UInt32

• Float32

• Float64

11

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

• String

• URL

The range of values for atomic type Attributes is the same as for the atomic variable types. See Section 7.2.1
(page 24) for information on the persistent representation of atomic-type Attributes.

3.5 Attribute Structures

An Attribute structure is a container which MAY be empty or which MAY contain atomic type Attributes
and/or Attribute structures. Semantically, an Attribute structure is equivalent to the Structure variable type;
it provides a way to form logical groupings and hierarchies of Attributes. An Attribute structure MAY NOT
directly contain values, only other Attributes and Attribute Structures.

3.6 Attribute organization

Each variable MUST have an associated Attribute Structure and the hierarchy formed by these containers
MUST mirror the hierarchy of variables in the data source. There is no requirement that a Dataset have an
Attribute Structure if it has no global Attributes. This is one way in which the Dataset, which is similar to
Structure-type variable, is treated specially. All other Structure variables are REQUIRED to have an associated
Attribute Structure (as are ALL variables) but the Dataset has no such requirement.

4 Constraint Expressions

A constraint expression provides a way for DAP client programs to request certain variables, or parts of certain
variables, from a data source. Many data sources are large and many variables from those sources are also large.
Often clients are interested in only a small number of values from the entire data source. Constraint expressions
provide a way for clients to tell a server which variables, and in many cases, which parts of those variables,
they would like.

This section presents the subsampling abilities that MUST be provided by a DAP server. It does so with-
out binding these capabilities to any particular syntax; see Section 6.1.1 (page 20) for the representation of
a constraint expression. Some implementations MAY choose to implement additional syntaxes but MUST
implement the syntax described there.

Note that an empty constraint expression implies that the entire data source is to be accessed.

4.1 Limiting data by type and by value

A constraint expression provides two different methods to access the information held by a data source. The
constraint expression can be used to limit data using the names and/or dimensions of variables or by scanning
variables and returning only those values that satisfy certain relational expressions. The former are referred to
as projections while the latter are called selections.

A constraint expression MAY combine both projection and selection constraints. For example, a projection
might specify that temperatures held in a Sequence are to be returned, and a selection would specify that only

12

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Sequence entries with dates later than 1999 are to be examined. The result returned from a request like this
would be a Sequence of temperature measurements taken after 1999.

Section 4.1.1 (page 13) describes the projection operations which any DAP implementation MUST support
and, likewise, Section 4.1.2 (page 15) describes the required selection operations.

To provide implementors with a means to extend the constraint expression mechanism, it is possible to add
functions to a server and to call those as part of the constraint expression. Functions are described in Sec-
tion 4.1.3 (page 16) .

4.1.1 Projections

The projection clause of a constraint expression provides a way to choose parts of a data set based on the data
types of the variables in a Dataset. There are two types of projection operations. First, it is possible to choose
individual fields of the constructor data types. This is called field projection and applies to the Structure, Grid
and Sequence data types in the following ways:

Structure A field projection which chooses one or more fields from a Structure variable causes a DAP server
to return only those named fields from the Structure. Note that the Dataset itself is similar to a Structure.
It differs in that it MAY have an attribute container (while all other variables MUST) and it MUST NOT
be included in forming fully qualified names (See Section 5 on page 17).

Grid A field projection which chooses one or more fields from a Grid variable causes a DAP server to return
only those named fields from the Grid. It is likely that the variable returned will no longer meet the
criteria for a correctly formed Grid data type, so the variable may be returned as a Structure instead (see
Section 4.2 on page 17).

Sequence A field projection which chooses one or more fields from a Sequence variable causes a DAP server
to return only those named fields from the Sequence. For the Sequence type, this means returning the N
instances but limiting the fields those given in the field projection. For example, suppose the Sequence S
has P fields:

s0,0 s0,1 . . . s0,P−1

s1,0 s1,1 . . . s1,P−1

...
...

...
sN−1,0 sN−1,1 . . . sN−1,P−1

If a field projection is used to choose only the second field, the result of accessing S would be:

s0,1

s1,1

...
sN−1,1

When a projection in a constraint expression contains the name of a constructor-type variable, the response
MUST include all of the members of that variable. If a projection includes the name of a variable that is not
fully qualified (See Section 5 on page 17) the response SHOULD include that variable as if the fully qualified
name was given. This provides a shorthand notation for members of a constructor. Suppose there is a Structure
names foo with a member named bar. Including bar in a constraint expression would cause the foo.bar to

13

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

be included in the response. If a name appears in more than one place in a Dataset (for example, suppose a
Grid is named SST and has a member Array also named SST) the constraint expression evaluator MUST treat
the name as fully qualified and include either the matching variable in th response or return an Error response
if no variable matches.

When using a field projection, it is possible to request all of the members of a constructor-type variable by
using just the name of the constructor.

The second type of projection is a hyperslab. A hyperslab is used to limit returned data to those elements
that fall within a range of index values, and MAY also specify that the range be subsampled using a stride.
By including a hyperslab projection for one or more dimensions of a variable it is implied that any unnamed
dimensions are to be returned in their entirety.A hyperslab is applied to the Array, Grid and Sequence types in
the following way:

Array Array dimensions are numbered 0, . . . , N − 1 for an Array of rank N . Within each dimension of size
M , elements are numbered 0, . . . ,M − 1. A hyperslab projection for dimension n, 0 ≤ n < N MUST
include either the starting index ins

and ending index ine
such that ins

≤ ine
∀{0 ≤ in < M} or include

ONLY a starting index. In the later case the hyperslab causes the single element corresponding to the
index to be projected.4 If a stride is included in the hyperslab and is greater than ine − ins + 1 then the
hyperslab is equivalent to one where ins = ine and the original value of ine is discarded.5

Grid Grid dimensions are numbered as are Array dimensions; Grid dimensions MAY have hyperslab projec-
tions applied to them in a manner similar to Arrays except that a hyperslab applied to a Grid is applied
to not only the target array, but also all the corresponding map arrays. For example, given the Grid:

target =

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ,map1 =
[
−53 −52 −51 −50

]
,map2 =

26
25
24
23

A hyperslab projection which chose row indexes 1 and 2 and column indexes 1 and 2 would cause a
server to return:

target =
[

6 7
10 11

]
,map1 =

[
−52 −51

]
,map2 =

[
25
24

]
for the Grid.

Note that a field and hyperslab projection can be combined for a Grid to choose only part of one of the
fields, say just part of the target Array. In this case, the hyperslab applied to one field of the Grid is
equivalent to a hyperslab applied to an Array. Effectively, the field projection yields an Array and the
hyperslab is then applied to that Array.

Sequence A hyperslab can be applied to a Sequence. A Sequence with M instances can have a hyperslab
projection applied to it as if it is an Array of rank 1. Since the Sequence type does not contain an explicit
dimension size, the size M is not known until the entire Sequence is accessed.6 A hyperslab projection
can be used to ask for the first m elements, the next m elements, etc., which may be very useful for
clients which need to know the sizes of varaibles before accessing them. A hyperslab projection for a

4The use of the phrase starting index is misleading. We use the term to remain consistent with older documentation.
5A stride value is only meaningful when a projection contains a range of values indicated by both a start and end value; stride is not

meaning full when the projection consists of a start value only.
6For many Sequence variables, it may never be the case that the entire Sequence is accessed since it may contain millons of instances.

14

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Sequence (is, ie) will return m instances of the Sequence such that m = bie,M − 1c− is +1 depending
on whether ie is an index greater than the number of instances in the Sequence. Sequence instances are
indexed starting with zero.

It is possible to ask for values from several variables in a single constraint expression by including several
projections in the constraint expression. Also note that an empty constraint expression, by convention, projects
all of every variable in a data source.

4.1.2 Selections

A selection provides a way to limit data accessed based on the value(s) of those data. In many ways selections
are similar to WHERE claues in SQL[6]. A selection is composed of one or more relational sub-expressions.
Each sub-expression MUST be bound to a variable listed in a projection clause. When several sub-expressions
constitute a selection, the boolean value of the selection is the logical AND of each of the boolean values of each
sub-expression. Note that there is no way to perform a logical OR operation on the sub-expressions but there is
a way, within a sub-expression, to test several values and return true if any satisfy the releation.

Each of the relational sub-expressions (i.e. relations) is composed of two operands and a relational operator.
Each operand MUST be an atomic data type; it MAY be a fully qualified name from the data source or a
constant. Note that it is possible to have a relational sub-expression consist of two fully qualified names from
the data source or a single fully qualified name and either a single constant or a set of constants. In some cases
there are further limitations on the allowed types based on the relational operator. Table 5 lists the operators,
their meaning and the data types on which they may be applied.

Table 5: DAP Selection Relational Operators
Operator Meaning Types

< Less than Byte, Int16, Int32, UInt16, UInt32,
Float32, Float64

<= Less than or equal to Byte, Int16, Int32, UInt16, UInt32,
Float32, Float64

> Greater than Byte, Int16, Int32, UInt16, UInt32,
Float32, Float64

>= Greater than or equal to Byte, Int16, Int32, UInt16, UInt32,
Float32, Float64

= Equal Byte, Int16, Int32, UInt16, UInt32,
Float32, Float64, String, Url

!= Not equal Byte, Int16, Int32, UInt16, UInt32,
Float32, Float64, String, Url

=~ Regular expression match String, Url

Operands in a constraint expression selection MAY be either variables in the data source or constants. When
constants are used in a selection sub-expression they MAY be either single or multi-valued. If a constant
operand has more than one value, each value is used in succession when evaluating the relation. For example,
suppose there is a relation:

site = {"Diamond_St", "Blacktail_Loop"}

Then that relation is true for any instance where site is either Diamond St OR Blacktail Loop.

15

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

When a variable appears in a selection sub-expression it MUST be single valued.

Selections MAY ONLY be applied to the Sequence data type in the following way:

Sequence Logically, the relations in a selection bound to a Sequence are evaluated once for every instance
(i.e. row) of the Sequence; the result of applying the selection to the Sequence is a Sequence where all of
the instances satisfy all of the relations.

A Sequence S with three fields and four instances such as:

index temperature site
10 15.2 Diamond St
11 13.1 Blacktail Loop
12 13.3 Platinum St
13 12.1 Kodiak Trail

A selection such as index>= 11 would choose the last three instances:

index temperature site
11 13.1 Blacktail Loop
12 13.3 Platinum St
13 12.1 Kodiak Trail

The selection site=~ ".*_St" would choose two instances:

index temperature site
10 15.2 Diamond St
12 13.3 Platinum St

And a selection with the two sub-expressions index<=11, site=~".*_St" would return only one in-
stance:

index temperature site
10 15.2 Diamond St

Finally, a selection can relate two variables. index>temperature would return:

index temperature site
13 12.1 Kodiak Trail

4.1.3 Server Functions

A constraint expression MAY also use functions executed by the server. These can appear in a selection or in a
projection, although there are restrictions about the data types functions can return.

A function which appears in the projection clause MAY return any of the DAP data types. In this case the return
value of the function is treated as if it is a variable present in the top level of the Dataset (see Section 3.3.2 on
page 9).

A function which appears in the selection clause MAY return any atomic type if it is used in one of the relational
sub-expressions. If a function in the selection clause is used as the entire sub-expression, it MUST return an
integer value. If that value is zero, the function will evaluate as boolean false, otherwise it will evaluate as
boolen true.

When functions encounter an error, a DAP server MUST signal that condition by returning an error response.
A server MAY NOT return a partial response; any error encountered while evaluating the constraint expression
MUST result in a response that contains an unambiguous error message.

16

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

4.2 Data Type Transformation Through Constraints

When a constraint expression has a projection clause that identifies a piece of a constructor variable, such as
one field of a Structure or just the array part of a Grid, the lexical scoping of the variable is not abandoned.
This is important for avoiding name collisions. For example, if a single item is requestd from a Structure, the
response MUST contain a Structure with only that item.

Here is the behavior for each data type:

Array An Array MUST be returned as an Array of the same rank as the source Array (same number of di-
mensions). A hyperslab request that effectively eliminates a dimension by reducing its size to 1 does not
reduce the rank of the returned Array. For example, suppose a 10 by 10 element Array was subsampled
to a 1 by 2 Array. The returned variable would still be described as a two dimensional Array.

Structure A Structure MUST be returned as a Structure. If the projection clause of a constraint expression
selects only one member of the Structure, then a one-member Structure MUST be returned. If more than
one member of the Structure are named in the projection clause, they MUST be returned in the same
Structure.

Grid A Grid modified with a hyperslab operator MUST return another Grid, following the same rules as an
Array. But if the projection clause specifies the elements of the Grid independently of one another—
the target array, or one of the maps—then a Structure is returned containing only the specified vari-
ables. A two-dimensional Grid named Cloud will return a Grid in response to a request like this:
Cloud[1:10][20:30]. But a request for the target array alone—Cloud.Cloud[1:10][20:30]— re-
turns a Structure called Cloud containing an Array called Cloud. In this example, the map arrays are not
returned.

Sequence A Sequence MUST be returned as a Sequence, even if a selection clause selects only a single entry
or no entry at all. If a projection clause identifies more than one member of the Sequence, they MUST
be returned in the same Sequence.

5 Names

This section describes the persistent representation of names.

A DAP variable’s name MUST contain ONLY US-ASCII characters with the following additional limitation:
The characters MUST be either upper or lower case letters, numbers or from the set _ ! ~ * ’ - " . Any
other characters MUST be escaped.

5.1 Escaping characters in names

To escape a character in a name, the character is replaced by the sequence %<Character Code> where Char-
acter Code is the two hex digit code corresponding to the US-ASCII character. Note that the characters (and)
(left and right parenthesis) must be escaped because those are used in the constraint expression syntax and not
escaping them makes it impossible to parse certain constraint expressions. Similarly, the . (period) character
MUST be escaped when it appears as part of the name of a variable because it is used as the separator between
names in a fully qualified name. Thus, not escaping the period would make it impossible to parse certain
constraint expressions.

17

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

5.2 Constructor variable names

The members of a constructor variable can be individually addressed in the following fashion:

Array Individual Array items MUST be addressed with a subscripted expression. For an Array named Temp,
the fourteenth member of the Array is referenced as Temp[13] (all indexes start at zero). A two-
dimensional Array is addressed with two subscripts, contained in separate brackets: SurfaceTemp[13][3].
See Section 6.1.1 (page 20) .

Structure Members of a Structure are addressed by appending the member name to the Structure name, sep-
arated by a dot (.). If the Structure Position has a member named Height, then it is addressed as
Position.Height. The members of a Structure MUST have different names from one another.

Grid The arrays in a Grid MAY be referenced in the same fashion as the members of a Structure. For a
two-dimensional Grid named Cloud, with one-dimensional map vectors Latitude and Longitude, a
member of a map vector is addressed like this: Cloud.Latitude[36]. This refers to a single value from
the Latitude array. It is also possible to request part of the target array: Cloud.Cloud[36][42], which
will return a single data measurement. The Grid itself MAY be addressed like an Array: Cloud[36][42],
which will return a Grid containing the value Cloud.Cloud[36][42] along with the two map vectors.
See Section 4.2 (page 17) for an explanation of how data types are transformed by constraints.

Sequence A Sequence member is addressed in the same fashion as a Structure. That is, a time called
Releasedate of a Sequence named Balloons is addressed as Balloons.Releasedate. But note that
unlike a Structure, this name references as many different values as there are entries in the Balloons
Sequence. A single entry or range of entries in a Sequence MAY be addressed with a hyperslab operator
like the items in an Array. The variables in a Sequence MUST have different names from one another.

5.3 Fully Qualified Names

The lexical scoping rules of the DAP require some description. The important concept is the fully qualified
name , which is an unambiguous name for some variable or attribute.

5.3.1 Variable Names

The fully qualified name of a variable is composed of the ordered collection of variable names, starting at the
Dataset level but not including the Dataset name, that can be followed to the terminal variable name. The
names MUST be separated by the dot (.) character. Thus, if a Dataset named test contains a structure named
sst which contains a variable named foo, the fully qualified name would be sst.foo.

5.3.2 Attribute Names

The fully qualified name of an Attribute is composed of the ordered collection of Attribute names, starting at
the Dataset level but not including the Dataset name, that can be followed to the terminal source Attribute. The
names MUST be separated by the dot (.) character. Thus, if a Dataset named test contains a structure named
sst which contains a variable named foo, the fully qualified name of the Attributes of foo would be sst.foo.
If foo possessed an Attribute named fruit then the fully qualified name for fruit would be sst.foo.fruit.

18

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

NOTE: Forming the fully qualified name for an Attribute is largely a formality in DAP/2.0 since it is only
possible to request all of the Attributes. However, the requirements are included here as a guide.
Future versions of the DAP may require its implementation.

6 Requests

The DAP is a client-server protocol: the client makes a request of the server, and the server responds with some
information. The request and response travel via HTTP. This section describes the form of requests to servers
and responses to clients.

6.1 URL Syntax

A DAP URL is essentially an HTTP URL [7] with additional restrictions placed on the abs-path component.

DAP-URL = "http://" host [":" port] [abs-path]
abs-path = server-path data-source-id ["." ext ["?" query]]
server-path = ["/" token]
data-source-id = ["/" token]
ext = "das" | "dds" | "dods"

The server-path is the pathname to the server, whereas data-source-id is the pathname to the data.

The DAP uses HTTP as its session protocol [16], so every DAP URL starts with the scheme http:. The host
and optional port name a host and TCP port of an HTTP server that will handle the session. The host may
also contain authentication information as described in RFC 2617 [8].

The abs-path portion of the DAP-URL is composed of four parts:

server-path A pathname which identifies the DAP server to handle the request. The servers may be imple-
mented as Common Gateway Interface (CGI) programs or they may use another equivalent scheme (e.g.
the Apache HTTP daemon’s module system).

data-source-id A string passed to the server named by server-path that uniquely identifies the source of data
on host. The data-source-id may take the form of a pathname within the HTTP server’s document
root directory, or it may name the data source in some other way (e.g. the DAP server might maintain a
table of names mapped to tables in a relational database).

Two special data-source-ids MUST be recognized by a DAP server. They are version and help.
When a DAP server receives the data-source-id version it MUST respond with version information
(see Section 7.2.5 on page 29). When a DAP server receives the data-source-id help it MUST
respond with a help message (see Section 7.2.6 on page 30).

ext The optional ext part of the abs-path tells the DAP server which type of response to return. Each
response has a string that is used by the requester. See Section 7 (page 22) for a description of the
responses and the ext strings used to request them.7

7The ext is optional because it is possible to request either the version or help response using a special data-source-id of version
or help, respectively. See Section 7.2.5 (page 29) and Section 7.2.6 (page 30) .

19

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

query The optional query part of the abs-path is used with data requests to limit those requests to specific
variables or values within the data source. See Section 6.1.1 (page 20) . The query part MAY be used
with the dds and dods ext.

6.1.1 Constraint expressions

A Constraint Expression (CE) provides a way for clients to request certain variables, or parts of certain vari-
ables, from a data source. This section describes the syntax used to encode a constraint expression so that it
can be sent, as part of a request, to a server. See Section 4 (page 12) for a general discussion of constraint
expressions and the rules for their evaluation.

Some implementations of the DAP MAY choose to provide alternate constraint expression syntax, but all
implementations MUST provide the one described here.

Constraint expressions have the following syntax:

CE = [projection] *("\&" selection)
projection = variable | variable "," projection
variable = id | function
function = id "(" args ")"
args = arg | arg "," args
arg = id | quoted-string | integer | float | URL
id = 1*<any CHAR except CTLs or SP> [array-dim]

The constraint expression MUST be encoded using US-ASCII characters. It MAY be used when requesting the
DDS or DataDDS (i.e. when using the dds or dods extensions, see Section 7.2.3 on page 28). It MAY NOT be
used with the DAS, Version or Help Requests. When it is included in a request, it MUST appear in the request
URL as described in Section 6.1 (page 19) . Note that a constraint expression is optional for both the DDS and
DataDDS requests; if absent the request is for the entire contents of the data source.

A constraint expression has two parts, the projection and the selection. A projection lists the variables to be
returned by the DAP server. If more than one variable is to be returned, then the projection is a comma-
separated list of variables. Leaving the projection part of the CE empty is shorthand for requesting all the
variables in the data source. A selection is used to request that variables, or instance of variables in the case of
a Sequence, are returned only if they match certain values. Either or both the projection and selection part of
the constraint expression MAY be null.

6.1.1.1 Identifier names The encoding rules for identifier names are given in Section 5 (page 17) . A valid
identifier name MUST appear for id in the above grammar. To refer to one field of a constructor type, set id
to the name of the constructor, followed by a period (.) and the field name. To request all of the fields in a
constructor, set id to the name of the constructor. The id value is case-sensitive: the string temp is different
than the string Temp.

6.1.1.2 Hyperslab operators An Array MAY be accessed using only its name to return the entire array or
using a hyperslab ([]) operator to return a rectangular section of the array. In the later case, the hyperslab is
defined for each dimension by a starting index, and ending index, and an optional stride value. An Array or
Grid variable MUST either be unconstrained or have a hyperslab constraint for each of its dimensions. Note
that it is possible to combine the syntax that requests a field of a constructor with the Array hyperslab syntax
to request a section of one of the Array variables held in a Grid.

20

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

array-dim = [start ":" stride ":" stop]
[start ":" stop]
[start]

start, stride, stop = 1*DIGIT

The omitted stride value indicates a default of one. If the stop is also omitted, its default value is the same
as the start value. All of these must be integers greater than or equal to zero.

6.1.1.3 Calling server-side functions Functions MAY be called as part of either the projection or selection
clauses. In the case of a selection, the function MUST return a value which can be used when evaluating the
clause. In the case of a projection, the function MUST return a DAP variable which will then be the return
value of the request or it MUST return nothing in which case it is run for side effect only.

selection = *relation | *function
relation = (id rel-op id) | (value rel-op id)

| (id rel-op value)
value = constant | ("{" 1#constant "}")
constant = quoted-string | <int> | <float> | URL

6.1.1.4 Syntax errors Syntax errors in the constraint expression MUST cause an Error response to be
returned. The Error response SHOULD contain text that describes the error. The description SHOULD be
human readable.

6.2 Request Headers

The headers described in Sections 6.2.1 to 6.2.3 MUST be handled as described. Other headers which are part
of HTTP 1.1 MAY be included in the request and MAY be honored by a DAP server.

6.2.1 Accept-Encoding

The Accept-Encoding request-header is used by a DAP client to tell a server that it can accept compressed re-
sponses. See RFC 2616 [7] for this header’s grammar. Values for encodings are deflate, gzip and compress.
This header is OPTIONAL. When a client includes this header it is effectively asking the DAP server to encode
the response using the given scheme. The server is under no obligation to use the requested encoding. Note
that as per Section Section 7.1.2 (page 22) , a server MUST use the Content-Encoding header to indicate that
a content encoding has been applied. A server MUST NOT use an encoding when a client has not requested it.

6.2.2 Host

The Host request-header is used by a DAP client to provide its IP address or DNS name to the DAP server.
See RFC 2616 [7] for this header’s grammar. This header MUST be included with every request.

6.2.3 User-Agent

The User-Agent request-header is used by a DAP client to provide specific information about the client
software to the DAP server. See RFC 2616 [7] for this header’s grammar. This header is RECOMMENDED.
DAP servers MAY log this information.

21

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

7 Responses

A valid DAP response has the same form as a valid HTTP response. The first line contains the HTTP protocol
version, a status code and reason phrase [7]. Following this are the response headers which vary depending
on the request and payload of the response (see Section 7.1 (page 22) for a description of the headers). As
described in RFC 822 [5], the HTTP response status line and headers are separated from the response’s payload
by an extra set of CRLF8 characters which make a blank line.

The ten possible response payloads defined by the DAP are described in detail in Section 7.2 (page 24) .

7.1 Response Headers

The DAP responses use several of the standard MIME headers, in addition to some DAP-specific headers.

7.1.1 Content-Description

The Content-Description header is used to tell clients which of the different basic responses is being
returned or if an error message is being returned. For any of the basic responses (DDS, DAS, or DataDDS) or
the error response, this header MUST be included. This header MUST NOT be included in Version or Help
requests. See IETF RFC 2045 [9] for information about this header.

Content-Description = "Content-Description :" tag
tag = "dods-dds" | "dods-das" | "dods-data" | "dods-error"

Example: Content-Description: dods-error

7.1.2 Content-Encoding

If a DAP server applies an encoding to an entity, it MUST include the Content-Encoding header in the
response. See RFC 2616 [7] for this header’s grammar.

Example: Content-Encoding: deflate

7.1.3 Content-Type

The Content-Type header MUST be included in any response from a DAP server. Valid content types for
DAP responses are: text/plain, text/html and application/octet.9 See RFC 2616 [7] for this header’s
grammar.

Example: Content-Type: application/octet

8The token ‘CRLF’ is used to denote the carriage return and linefeed characters which correspond to decimal value 10 and decimal
vale 13.

9It would be better to use a multipart document in place of the application/octet.

22

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

7.1.4 Support for HTTP/1.1 caching

In order to support HTTP/1.1 caching, either in the client or in a separate client-side cache sub-system, the DAP
must included two headers in each response: Date and Last-Modified. Other headers such as Expires,
Cache-Control and Vary are useful but not essential.

While not required by the DAP, the Expires header is none-the-less important. Because programs may down-
load the structure (DDS), attributes (DAS) and data (DataDDS) as separate requests and at separate times,
a cache may pick significantly different expiration times in the absence of an explicit Expires header. Data
sources that are frequently updated will have DAP component requests that cache and expire together if the
Expires header is explicitly (and correctly) set.10

See the HTTP/1.1 RFC 2616[7] for more information about HTTP’s support for caching.

7.1.4.1 Date The Date header provides a time stamp for the response. This header is needed for servers
that support caching. See RFC 2616 [7] for this header’s grammar. Servers MUST provide this header.

Example: Date: Fri, 09 Feb 2001 18:54:55 GMT

7.1.4.2 Last-Modified The Last-Modified header provides the time that the response last changed. This
should be the most recent of the last time the data set changed and the last time the server changed.

Example: Last-Modified: Mon, 05 Feb 2001 18:54:55 GMT

7.1.5 Server

The Server header provides information about the server used to process the request. In this case the server
MAY be either the DAP server or an underlying HTTP server if the DAP server uses that as part of its imple-
mentation. See RFC 2616 [7] for this header’s grammar. This header is OPTIONAL.

Example:

Server: Apache/1.3.12 (Unix) (Red Hat/Linux) PHP/3.0.15 mod_perl/1.21

7.1.6 WWW-Authentication

The WWW-Authenticate header MUST be included in an HTTP message that has a response code of 401.
That is, when the DAP server is asked to provide access to a resource that is restricted and the request does not
include authentication information (see “HTTP Authentication: Basic and Digest Access Authentication” [8]).
then it must return with a response code of 401 and include the WWW-Authenticate header. See RFC 2616 [7]
for this header’s grammar.

Example:

WWW-Authenticate: Basic realm="special directory, with CGIs"

10Thanks to Benno Blumenthal for pointing this out and for providing an early version of this text.

23

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

7.1.7 XDODS-Server

The XDODS-Server header is used to return DAP server’s implementation version information to the client
program.11 This header MUST be included in every response.

XDODS-Server = "XDODS-Server : dods/" version
version = DIGIT . DIGIT [. DIGIT]

Example: XDODS-Server: dods/3.2.2

7.2 Response Bodies

There are several responses that can come from a server, but four of them are the core functionality of the
system. The DAS, the DDS, and the DataDDS can be thought of as data objects containing representations of
the data source’s semantic metadata (i.e. attributes), its syntactic metadata (structure), and its data, respectively.
The Error response MUST ONLY be used to signal problems with a request.

7.2.1 DAS

URL Extension das
Required Headers Content-Description: dods-das

Content-Type: text/plain
Server:
Date:
Last-Modified:
XDODS-Server:

The DAS response is returned as the payload of a message which MUST have dods-das as the value of
Content-Description and text/plain as the value of Content-Type. The body of the response contains
the persistent representation of the DAS object.

A DAS MUST have a container for each variable in the data source. The hierarchy of containers in a DAS
MUST follow the hierarchy of constructor types in the DDS. It MAY contain any number of extra containers.

das-doc = "Attributes" "{" *attribute-cont "}"
attribute-cont = attribute-cont | attribute
attribute = atomic-decl id 1#value ";"
value = <float> | <int> | id | quoted-string

7.2.1.1 Encoding Atomic types Atomic type attributes are encoded as follows: Each attribute has a print
representation that consists of the type name followed by the attribute name followed by the value or values.
The print representation of the value(s) is determined according to:

1. integers: Each integer value is printed using the base 10 ASCII representation of its value.

2. floating point: Each floating point value is printed using the base 10 ASCII representation of its value.
The ouput MUST conform to ANSI C’s description of printf using the %g format specification and the
precision is 6.

11The version information should be changed to reflect the version of the DAP.

24

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

3. string and URL: Strings and URLs are printed in US-ASCII. If the value of a string contains a space, it
must be quoted using double quotes ("). If the value contains a double quote, that MUST be escaped
using the backslash (\) character. The backslash character is represented as backslash-backslash (\\).

7.2.1.2 Encoding attribute structures Attribute Structures are encoded be printing the name of the Struc-
ture, followed by a curly brace ({), followed by the print representation of all its child attributes followed by a
closing curly brace (}).

An example DAS is shown in Figure 1.

7.2.2 DDS

URL Extension dds
Required Headers Content-Description: dods-dds

Content-Type: text/plain
Server:
Date:
Last-Modified:
XDODS-Server:

The DDS response is returned as the payload of a message which MUST have dods-dds as the value of
Content-Description and text/plain as the value of Content-Type. The body of the response contains
the persistent representation of the DDS object.

The DDS is a textual description of the variables and their names and types that compose the entire data set.
The data set descriptor syntax is similar to the variable declaration/definition syntax of C and C++. A variable
that is a member of one of the base type classes is declared by writing the class name followed by the variable
name. The type constructor classes are declared using C’s brace notation.

dds-doc = "data-source" "{" *type-decl "}" id ";"
type-decl = atomic-decl | array-decl

| structure-decl | sequence-decl | grid-decl

The dataset keyword has the same syntactic function as structure but is used for the specific job of en-
closing the entire data source even when it does not technically need an enclosing element (because at the
outermost level it is a single element such as a structure or sequence).

An example DDS is shown in Figure 2.

Variables in the DAP have two forms. They are either atomic types or constructor types.

7.2.2.1 Atomic variables Atomic variables are similar to predefined variables in procedural programming
languages like C or Fortran (e.g. int or integer*4).

byte an 8-bit byte;unsigned char in ANSI C.
13The attributes shown in the example are not part of DAP. In this particular example, most of the attributes’ semantics are defined by

the COARDS convention, but DAP attributes do not have to follow any convention. The important point is that they can follow conventions
if the people making data available choose to. Several reviewers have commented on the Fillvale attribute; this is from NCL. The leading
underscore instructs NCL to substitute this value for any missing values. Again, NCL is not part of the DAP but the DAP attributes are
general enough to support it.

25

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

attributes {
catalog_number {
}
casts {

experimenter {
}
time {

string units "hour since 0000-01-01 00:00:00";
string time_origin "1-JAN-0000 00:00:00";

}
location {

lat {
string long_name "Latitude";
string units "degrees_north";

}
lon {

string long_name "Longitude";
string units "degrees_east";

}
}
xbt {

depth {
string units "meters";

}
t {

float32 missing_value -9.99999979e+33;
float32 _Fillvalue -9.99999979e+33;
string history "From coads_climatology";
string units "Deg C";

}
}

}
}

Figure 1: Example Dataset Attribute Response. This example matches the DDS shown in Figure 2. Some of
the variables in this fictional data source (e.g. catalog number) have no attributes. Note that even though
they lack attributes, they still have a matching Attribute Structure.13

26

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

dataset {
int catalog_number;
sequence {

string experimenter;
int32 time;
structure {

float64 latitude;
float64 longitude;

} location;
sequence {

float depth;
float temperature;

} xbt;
} casts;

} data;

Figure 2: Example Dataset Descriptor Response.

int16 a 16-bit signed integer.

uint16 a 16-bit unsigned integer.

int32 a 32-bit signed integer.

uint32 a 32-bit unsigned integer.

float32 the IEEE 32-bit floating point datatype (ANSI C’s float).

float64 the IEEE 64-bit floating point datatype (ANSI C’s double) .

string a sequence of bytes terminated by a null character.

URL represented as a string, but may be dereferenced in a CE; see Section 4 (page 12) .

atomic-decl = atomic-type id ";"
atomic-type = "Byte" | "Int16" | "Uint16" | "Int32" | "Uint32"

| "Float32" | "Float64" | "String" | "Url"
id = (ALPHA | "_" | "%" | ".")

*(ALPHA | DIGIT | "/" | "_" | "%" | ".")

7.2.2.2 Array An Array is a one dimensional indexed data structure as defined by ANSI C. Multidimen-
sional arrays are defined as arrays of arrays. The size of each array’s dimensions must be given. Each dimension
of an array may also be named.

array-decl = array-types id array-dims ";"
array-types = atomic-decl | structure-decl | sequence-decl | grid-decl
array-dims = array-dim | array-dim array-dims
array-dim = "[" [name "="] 1*DIGIT "]"

The number of dimensions MUST be greater than zero.

27

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

7.2.2.3 Structure A structure groups variables so that the collection can be manipulated as a single item.
The variables can be of any type.

structure-type = structure "{" *structure-types "}" ";"
structure-types = atomic-type | array-type

| structure-type | sequence-type | grid-type

7.2.2.4 Sequence A sequence is an ordered set of N variables which has several instantiations (or values).
Variables in a sequence may be of different types. Each instance of a sequence is one instantiation of the
variables. Thus a sequence can be represented as:

s00 · · · s0n

...
...

si0 · · · sin

Every instance of sequence S has the same number, order, and type of variables. Thus in a sequence which
contains an array, each instance of the array MUST be the same size. A sequence implies that each of the
variables is related to each other in some logical way. A sequence is different from a structure because its
constituent variables have several instances while a structure’s variables have only one instance (or value).

sequence-decl = sequence "{" *sequence-types "}" ";"
sequence-types = atomic-type | array-type

| structure-type | sequence-type | grid-type

7.2.2.5 Grid A grid is an association of an N dimensional array with N named vectors, each of which has
the same number of elements as the corresponding dimension of the array. Each vector is used to map indices
of one of the array’s dimensions to a set of values which are normally non-integral (e.g. floating point values).
The N (map) vectors may be different types. Grids are similar to arrays, but add named dimensions and maps
for each of those dimensions.

grid-decl = "Grid" "{" "Array:" array-decl "Maps:" 1*array-decl "}" ";"

7.2.3 DataDDS

URL Extension dods
Required Headers Content-Description: dods-data

Content-Type: application/octet
Server:
Date:
Last-Modified:
XDODS-Server:

This response body is the one that returns data to the client. It consists of a copy of the DDS, followed by data
in its external representation, described in Section 7.3 (page 30) .

The DataDDS entity is returned as the payload of a message whose Content-Type header MUST be application/octet.
The body of the response contains both text which holds a DDS which describes the variables listed in the

28

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

request and the values for those variables encoded using XDR[17]. The text DDS and the binary data are
separated in the response entity by the literal Data:.

DataDDS = DDS CRLF "Data:" CRLF *OCTET

Clients MAY supply a constraint expression (see Section 4 on page 12) with any DataDDS request. The DDS
in the DataDDS response describes the variables returned. The order that the variables are listed in the DDS
MUST match the order of the values in the binary section of the DataDDS response. If the response contains
constructor types, then the variables are sent in the order they would be visited in a depth-first traversal of the
accompanying DDS.

7.2.4 Error

URL Extension n/a
Required Headers Content-Description: dods-error

Content-Type: text/plain
Server:
Date:
Last-Modified:
XDODS-Server:

When a server encounters an error, either in its software or in the users request, it MUST return an error
response. The body of the response contains an error code along with text that provides a description of the
problem encountered. Server writers are encouraged to provide text that describes the problem with enough
information to enable a user to correct the problem or submit a meaningful bug report to the server’s maintainer.

Error = "Error" "{" "code=" error-code ";"
"message=" error-msg ";" "}"

error-code = 1*DIGIT
error-msg = quoted-string

7.2.5 Version

URL Extension none
Required Headers Content-Type: text/plain

Server:
Date:
Last-Modified:
XDODS-Server:

The version response returns information about the DAP version, server version and may return information
about a data source’s version. The response may be requested in two ways: by using the string version as the
data-source-id or by appending the extension ver to the data source name (see Section 6.1 on page 19).

abs-path = server-path data-source-id ["." ext ["?" query]]
server-path = <name of DAP server>
data-source-id = "version"

29

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

If a DAP server receives a version request, it MUST return DAP version information. If the request is made
using the ver extension to a data-source-id then the server MUST return the DAP version and server
version information. It MAY also return a data source version.

Version information should be returned as plain text in the payload of the response. This version information
may be essentially the same as the information in the XDODS-Server header. The intent is to present users and
system maintainers with information about servers that can be used to track down problems or determine if a
server can be upgraded to a newer version to fix a particular problem.

version-response = dap-version CRLF server-version
[CRLF data-source-version]

dap-version = "Core version:" token "/" version-number
server-version = "Server version:" token "/" version-number
data-source-version = "Dataset version:" token "/" version-number
token = 1*<any CHAR except CTLs or separators>
version-number = 1*DIGIT "." 1*DIGIT "." 1*DIGIT

7.2.6 Help

URL Extension n/a
Required Headers Content-Type: text/html

Server:
Date:
Last-Modified:
XDODS-Server:

The help response MUST be returned when either the server receives a URL with no extension (i.e. a URL
which asks for no object) or when the data-source-id portion of the URL is help.

abs-path = server-path data-source-id ["." ext ["?" query]]
server-path = <name of DAP server>
data-source-id = "help"

The second way of requesting the help response is analogous to requesting the version response.

The help response MUST return an ASCII document which lists the extensions recognized by the server. The
response MAY return other information as well.

7.3 Encoding Values

This section describes the external (persistent) representation of values held by a DAP Data Source. This is the
way the variables are encoded for inclusion in the DataDDS (see Section 7.2.3 on page 28). This specification
should not be understood to dictate the storage of variables in a DAP client or server, in memory or on the
disk. What a client does with this data is beyond the scope of this specification, which is only concerned with
communicating the values from server to client.

From the point of view of the external representation, it is useful to divide the constructor types into aggregate
types and array types, making—with the atomic types—three basic types of DAP variables.

30

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Table 6: The XDR data types used by the DAP as the external representations of base-type variables

Base Type XDR Type
byte xdr byte
int16 xdr short
uint16 xdr unsigned short
int32 xdr long
uint32 xdr unsigned long
float32 xdr float
float64 xdr double
string xdr string
URL xdr string

7.3.1 Atomic types

The DAP uses Sun Microsystems’ XDR protocol [17] for the external representation of all of the atomic type
variables. Table 6 shows the XDR types used to represent the various base type variables.

7.3.2 Constructor types

In order to transmit constructor type variables, the DAP defines how the various base type variables, which
comprise the constructor type variable, are transmitted. Any constructor type variable may be subject to a
constraint expression which changes the amount of data transmitted for the variable (see Section 4 on page 12).
For each of the four constructor types these definitions are:

7.3.2.1 Array An array is first sent by sending the number of elements in the array twice.14 The array
lengths are 32-bit integers encoded using xdr long.15

Following the length information, each array element is encoded in succession. Arrays of bytes are handled
differently than other arrays:

1. An array of bytes: Bytes are encoded as the function xdr byte() encodes an array of bytes. The order of
bytes is retained regardless of the endian nature of the source. Arrays of bytes, not individual bytes, are
padded to four byte boundries. Thus an array of 10 bytes is padded to 12 bytes.

2. One-dimensional arrays of all types other than byte are encoded by encoding each element of the array
in the order they appear. Note that atomic types are encoded as XDR would encode an array. Constructor
types are encoded by individually encoding each value as described in this section.16

14This is an artifact of the first implementation of the DAP and XDR. The DAP software needed length information to allocate memory
for the array so it sent the array length. However, XDR also sends the array length for its own purposes. The demands of backward
compatibility have left it in current implementations.

15Note that this means that array lengths are limited to 231 − 1 elements.
16This means that while just about every array type remains the same size once encoded, an array of 16-bit integers doubles in size

because XDR encodes 16-bit integers as 32-bit integers. Note that byte arrays are a special case, individual bytes are not padded; instead
the entire array is padded. For a more deatiled description of XDR’s operation, see RFC 1014.[17]

31

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

3. Multi-dimensional arrays are encoded by encoding the elements using row-major ordering. Note that
atomic types are encoded as XDR would encode an array. Constructor types are encoded by individually
encoding each value as described in this section.

Array = length length values
length = <32-bit integer, signed, big endian>
values = bytes | other-values
bytes = <8-bit bytes padded to a four-byte boundary>
other-values = numeric-values | strings | aggregates

7.3.2.2 Structure A structure is sent by encoding each field in the order those fields are declared in the
structure. For example, the structure:

Structure {
int32 x;
float64 y;

} a;

Would be sent by encoding the int32 x and then the float64 y.

Nested structures are sent by encoding their ‘leaf nodes’ as visited in a depth first traversal. For example:

Structure {
int32 x;
Structure {

String name;
Byte image[512][512];

} picture;
float64 y;

} a;

Would be sent by encoding x, then name, image and finally y.

7.3.2.3 Sequence A Sequence is transmitted by encoding each instance as for a structure and sending one
after the other, in the order of their occurrence in the data set. The entire sequence is sent, subject to the
constraint expression. In other words, if no constraint expression is supplied then the entire sequence is sent.
However, if a constraint expression is given, only the records in the sequence that satisfy the expression are
sent

Because a sequence does not have a length count, each instance is prefixed by a start of instance marker.
Also, to accommodate nested sequences, then end of each sequence as a whole is marked by a end of
sequence marker.

sequence = instances end-of-seq
instances = start-of-inst instance-values
end-of-seq = <byte value 0xA5>
start-of-inst = <byte value 0x5A>

Note that since XDR is used to encode the binary data response, the start of instance and end of
sequence bytes must thus be encoded using XDR. This means that these bytes are sent with three additional
bytes of padding. See the documentation for xdr byte.

32

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

7.3.2.4 Grid A Grid is encoded as if it were a Structure (one component after the other, in the order of their
declaration).

8 Examples

Following are some examples, of requests sent to a server representing some data source, and the response
documents returned by those requests.

8.1 Simple request

Assume a server called server.edu has some temperature data, stored as a ten-element array named Tmp, in
a single file called temp.dat, in a directory called data in the htdocs tree. A DAP URL requesting the DDS
might look like this:

http://server.edu/data/temp.dat.dds

In all of the following examples, carriage returns and new lines are shown as <CRLF>. Only shown are the
<CRLF> characters that are REQUIRED. Since some of all of each response is encoded as text, it makes sense
to include extra line breaks to enhance their readability (as we’ve done here).

The document containing the DDS would look like this:

Content-Description: dods-dds<CRLF>
Content-Type: text/plain<CRLF>
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21<CRLF>
Date: Fri, 09 Feb 2001 18:54:55 GMT<CRLF>
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1<CRLF>
<CRLF>
Dataset {
Float32 Tmp[10];

} temp.dat;

Note that each of the response headers MUST end in a carriage-return line-feed pair. Also note that a carriage-
return line-feed pair on an otherwise blank line MUST separate the response headers from the message body.[9,
10]

The DAS would be requested like this:

http://server.edu/data/temp.dat.das

And its response might look like this:

33

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Content-Description: dods-das<CRLF>
Content-Type: text/plain<CRLF>
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21<CRLF>
Date: Fri, 09 Feb 2001 18:54:55 GMT<CRLF>
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1<CRLF>
<CRLF>
Attributes {
Tmp {
Float32 Lat 42.2;
Float32 Lon -89.3

}
}

The data would be requested like this:

http://server.edu/data/temp.dat.dods

The DataDDS containing the data would look like this:

Content-Description: dods-data<CRLF>
Content-Type: application/octet-stream<CRLF>
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21<CRLF>
Date: Fri, 09 Feb 2001 18:54:55 GMT<CRLF>
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1<CRLF>
<CRLF>
Dataset {
Float32 Tmp[10];

} temp.dat;<CRLF>
Data:<CRLF>
<Tmp length><Tmp length><value of Tmp[0]> ... <value of Tmp[9]>

Where <Tmp length> (which appears twice) is the number (32-bit big-endian twos-compliment signed inte-
ger) of elements in the array. In this case it would be ten (00 00 00 0A16) and <value of Tmp[0]>, et c.,
are the values (32-bit big endian IEEE 754 floating point).

Note that the Content-Type header’s value is application/octet-stream for this type of response and
that the character sequence <CRLF>Data:<CRLF> serves as a separator for the response DDS and the binary
data values.

The binary data which follows the <CRLF>Data:<CRLF> separator MUST NOT contain any carriage-return
line-feed pairs.

8.2 Grid

Suppose you know that there’s a 30 by 50 Grid held in some data source at server.edu, and you want a 2 by
3 chunk of it. You can request a part of a Grid with a constraint expression like this: grid[20:21][40:42].

NOTE: In the remaining examples, we will omit the explicit indication of carriage-return line-feed pairs
to simplify presentation.

34

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Ask for the DDS of this data like this:

http://server.edu/grid-data/grid.dat.dds?grid[20:21][40:42]

The document containing the DDS would look like this:

Content-Description: dods-dds
Content-Type: text/plain
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Grid {
Array:
Float32 grid[xdimen = 2][ydimen = 3]

Maps:
Float32 xdimen[xdimen = 2];
Float32 ydimen[ydimen = 3];

} grid;
} temp2.dat;

The DAS would be requested like this:

http://server.edu/grid-data/grid.dat.das?grid[20:21][40:42]

And its response might look like this:

Content-Description: dods-das
Content-Type: text/plain
Server: Server: Apache/1.3.12 (Unix) (Red Hat/Linux) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Attributes {
grid{
String Date "3 Nov 2003, 1433Z";
String Instrument "Black & Decker Spectrum Analyzer";

}
}

The data would be requested like this:

http://server.edu/grid-data/grid.dat.dods?grid[20:21][40:42]

The DataDDS containing the data would look like this:

35

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Content-Description: dods-data
Content-Type: text/plain
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Grid {
Array:
Float32 grid[xdimen = 2][ydimen = 3]

Maps:
Float32 xdimen[xdimen = 2];
Float32 ydimen[ydimen = 3];

} grid;
} temp2.dat;
Data:
<grid.grid length><grid.grid length>
<grid.grid[0][0]><grid.grid[0][1]><grid.grid[0][2]>
<grid.grid[1][0]><grid.grid[1][1]><grid.grid[1][2]>
<grid.xdimen length><grid.xdimen length><grid.xdimen[0]><grid.xdimen[1]>
<grid.ydimen length><grid.ydimen length><grid.ydimen[0]><grid.ydimen[1]>
<grid.ydimen[2]>

The data held in a Grid type is encoded as for a Structure, one field at a time. In this example, first the
grid.grid field is encoded, then the grid.xdimen and grid.ydimen

8.3 Sequence

A Sequence of data called seq is also stored at server.edu. Each record of the sequence contains three
values: xval, yval, and zval. A constraint which asks for all values of the Sequence where xval is less than
fifteen would look like:

xval<15

Ask for the DDS of these data like this:

http://server.edu/seq-data/seq.dat.dds?xval<15

The document containing the DDS would look like this:

36

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Content-Description: dods-dds
Content-Type: text/plain
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Sequence {
Int16 xval;
Int16 yval;
Int16 zval;

} seq;
} temp3.dat;

The DAS would be requested like this:

http://server.edu/seq-data/seq.dat.das?xval<15

And its response might look like this:

Content-Description: dods-das
Content-Type: text/plain
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Attributes {
xval {
String units "meters per second";

}
yval {
String units "kilograms per minute";

}
zval {
String units "tons per hour";

}
}

The data would be requested like this:

http://server.edu/seq-data/seq.dat.dods?xval<15

The DataDDS containing the data would look like this:

37

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Content-Description: dods-data
Content-Type: text/plain
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Sequence {
Int16 xval;
Int16 yval;
Int16 zval;

} seq;
} temp3.dat
Data:
<0x5A><first xval><first yval><first zval>
<0x5A><next xval><next yval><next zval>
<0x5A><next xval><next yval><next zval>
<0x5A><last xval><last yval><last zval><0xA5>

A Sequence’s values are transmitted one instance at a time. Each instance is prefixed by the start of instance
marker which is 5A16. In this example, the constraint xval<15 causes four instances to be sent and each one is
prefixed by the start of instance marker. Once all of the selected instances of the Sequence have been sent, the
end of sequence marker (A516) is written.

Here’s a second example of a DataDDS request/response pair for a more complex data source, one that has a
Sequence within a Sequence. The DDS for this data source looks like:

Dataset {
Sequence {
Float32 lat;
Float32 lon;
Sequence {
Int16 depth;
Float64 temp;

} sounding;
} track;

} temp4.dat;

Suppose you wanted to get all the soundings in a lat/lon box that spans the area of 80 to 90 degrees north latitude
and 50 to 60 degress west longitude (you would know the units of data source by looking at the attributes which
have been omitted from this example). Here’s the constraint expression:

track.lat>80.0&track.lat<90.0&track.lon<-50.0&track.lon>-60.0

If you requested the DataDDS using the constraint, the response would be:

38

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Content-Description: dods-data
Content-Type: text/plain
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Sequence {
Float32 lat;
Float32 lon;
Sequence {
Int16 depth;
Float64 temp;

} sounding;
} track;

} temp4.dat;
Data:
<0x5A><track.lat><track.lon>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp><0xA5>
<0x5A><track.lat><track.lon>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp><0xA5>
<0x5A><track.lat><track.lon>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp>
<0x5A><track.sounding.depth><track.sounding.temp><0xA5><0xA5>

In this example, the constraint has selected three instances of the outer Sequence track. For each instance of
track, there is a complete inner Sequence sounding which, for this constraint, is sent in its entirety.17 Note
that the end of sequence marker following <track.sounding.temp> is the marker for the end of the inner
Sequence, called sounding. The final A516 is the end of sequence marker for the outer Sequence, track.

References

[1] Ken Arnold and James Gosling. The Java Programming Language. Addision Wesley, Reading,
Massachusetts, 1996.

[2] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifiers (URI): Generic syntax. RFC
2396.

[3] S. Bradner. Key words for use in rfcs to indicate requirement levels. RFC 2119.
17You could write a different constraint expression that would choose only values at a certain depth, et cetera.

39

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

[4] Peter Cornillon, James Gallagher, and Tom Sgouros. Opendap: Accessing data in a distributed,
heterogeneous environment. CODATA Data Science Journal, 2:164–174, 2003. Online 5 November,
2003: http://journals.eecs.qub.ac.uk/codata/Journal/contents/2 03/2 03pdfs/DS247.pdf.

[5] David H. Crocker. Standard for the format of arpa internet text messages. RFC 822.

[6] C.J. Date. An Introduction to Database Systems. Addison Wesley, Reading, Massachusetts, 2000.

[7] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol — HTTP/1.1. RFC 2616.

[8] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawerence, P. Leach, A. Loutonen, and L.Stewart. Http
authentication: Basic and digest access authentication. RFC 2617.

[9] N. Freed and N. Borenstein. Multipurpose internet mail extensions (MIME) part one: Format of internet
message bodies. RFC 2045.

[10] N. Freed and N. Borenstein. Multipurpose internet mail extensions (MIME) part two: Media types. RFC
2046.

[11] James Gallagher and George Milkowski. Data transport within the distributed oceanographic data
system. In World Wide Web Journal: Fourth International World Wide Web Conference Proceedings,
pages 691–702, 1995.

[12] NCSA. HDF 4.1r3 user’s guide. http://hdf.ncsa.uiuc.edu/UG41r3 html/, 1999. Retrieved from the
World Wide Web 13 October 2003.

[13] NCSA. HDF5 - a new generation of HDF. http://hdf.ncsa.uiuc.edu/HDF5/, 2001. Retrieved from the
World Wide Web 15 December 2002.

[14] Russ Rew, Glenn Davis, and Steve Emmerson. NetCDF User’s Guide. Unidata Program Center,
Boulder, Colorado, April 1993. Version 2.3.

[15] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Bedford, Massachusetts, 1984.

[16] W. Richard Stevens. UNIX Network Programming. Prentice-Hall, Inc., 2d edition, 1999.

[17] Sun Microsystems, Mountain View, California. XDR. Version 4.

[18] ANSI. C.

[19] IEEE.

[20] US-ASCII. Coded character set—7-bit american standard code for information interchange. standard
ANSI X3.4-1986. ANSI, 1986.

40

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

Authors

James Gallagher
OPeNDAP, Inc.
165 Dean Knauss Dr.
Narragansett, RI. 02882
Phone: 401.284.1304, email: jgallagher@opendap.org

Nathan Potter
Oregon State University
Phone: 541.737.2293, email: ndp@coas.oregonstate.edu

Tom Sgouros
Manual Writing NA.
Phone: 401.861.2831, email: tomfool@as220.org

Steve Hankin
NOAA PMEL
Phone: 206.526.6080, email: Steven.C.Hankin@noaa.gov

Glenn Flierl
MIT
Phone: 617.253.4692, email: glenn@lake.mit.edu

Appendix A Notational Conventions and Generic Grammar

A.1 Augmented BNF

All of the mechanisms specified in this document are described in both prose and an augmented Backus-Naur
Form (BNF) similar to that used by RFC 822 [5]. Implementors will need to be familiar with the notation in
order to understand this specification. The augmented BNF includes the following constructs:

name = definition The name of a rule is simply the name itself (without any enclosing "<" and ">")
and is separated from its definition by the equal "=" character. White space is only significant in that
indentation of continuation lines is used to indicate a rule definition that spans more than one line.
Certain basic rules are in uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets
are used within definitions whenever their presence will facilitate discerning the use of rule names.

"literal" Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.

rule1 | rule2 Elements separated by a bar ("|") are alternatives, e.g., "yes | no" will accept yes or no.

(rule1 rule2) Elements enclosed in parentheses are treated as a single element. Thus, "(elem (foo |
bar) elem)" allows the token sequences "elem foo elem" and "elem bar elem".

rule The character "" preceding an element indicates repetition. The full form is "<n>*<m>element"
indicating at least <n> and at most <m> occurrences of element. Default values are 0 and infinity so

41

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

that "*(element)" allows any number, including zero; "1*element" requires at least one; and
"1*2element" allows one or two.

[rule] Square brackets enclose optional elements; "[foo bar]" is equivalent to "*1(foo bar)".

N rule Specific repetition: "<n>(element)" is equivalent to "<n>*<n>(element)"; that is, exactly
<n> occurrences of (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three
alphabetic characters.

#rule A construct "#" is defined, similar to "*", for defining lists of elements. The full form is
"<n>#<m>element" indicating at least <n> and at most <m> elements, each separated by one or
more commas (",") and OPTIONAL linear white space (LWS). This makes the usual form of lists very
easy; a rule such as (*LWS element *(*LWS "," *LWS element)) can be shown as
1#element Wherever this construct is used, null elements are allowed, but do not contribute to the
count of elements present. That is, "(element), , (element) " is permitted, but counts as only two
elements. Therefore, where at least one element is required, at least one non-null element MUST be
present. Default values are 0 and infinity so that "#element" allows any number, including zero;
"1#element" requires at least one; and "1#2element" allows one or two.

; comment A semi-colon, set off some distance to the right of rule text, starts a comment that continues to
the end of line. This is a simple way of including useful notes in parallel with the specifications.

implied *LWS The grammar described by this specification is word-based. Except where noted otherwise,
linear white space (LWS) can be included between any two adjacent words (token or quoted-string), and
between adjacent words and separators, without changing the interpretation of a field. At least one
delimiter (LWS and/or separators) MUST exist between any two tokens (for the definition of ”token”
below), since they would otherwise be interpreted as a single token.

A.2 Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-ASCII
coded character set is defined by ANSI X3.4-1986 [20].

OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCII character (octets 0 - 127)>
UPALPHA = <any US-ASCII uppercase letter "A".."Z">
LOALPHA = <any US-ASCII lowercase letter "a".."z">
ALPHA = UPALPHA | LOALPHA
DIGIT = <any US-ASCII digit "0".."9">
CTL = <any US-ASCII control character

(octets 0 - 31) and DEL (127)>
CR = <US-ASCII CR, carriage return (13)>
LF = <US-ASCII LF, linefeed (10)>
SP = <US-ASCII SP, space (32)>
HT = <US-ASCII HT, horizontal-tab (9)>
<"> = <US-ASCII double-quote mark (34)>

HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all protocol elements except the
entity-body (see appendix 19.3 for tolerant applications). The end-of-line marker within an entity-body is
defined by its associated media type, as described in section 3.7.

CRLF = CR LF

42

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

HTTP/1.1 header field values can be folded onto multiple lines if the continuation line begins with a space or
horizontal tab. All linear white space, including folding, has the same semantics as SP. A recipient MAY
replace any linear white space with a single SP before interpreting the field value or forwarding the message
downstream.

LWS = [CRLF] 1*(SP | HT)

The TEXT rule is only used for descriptive field contents and values that are not intended to be interpreted by
the message parser. Words of *TEXT MAY contain characters from character sets other than ISO- 8859-1
[22] only when encoded according to the rules of RFC 2047 [14].

TEXT = <any OCTET except CTLs,
but including LWS>

A CRLF is allowed in the definition of TEXT only as part of a header field continuation. It is expected that the
folding LWS will be replaced with a single SP before interpretation of the TEXT value.

Hexadecimal numeric characters are used in several protocol elements.

HEX = "A" | "B" | "C" | "D" | "E" | "F"
| "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

Many HTTP/1.1 header field values consist of words separated by LWS or special characters. These special
characters MUST be in a quoted string to be used within a parameter value (as defined in section 3.6).

token = 1*<any CHAR except CTLs or separators>
separators = "(" | ")" | "<" | ">" | "@"

| "," | ";" | ":" | "\" | <">
| "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT

Comments can be included in some HTTP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containing ”comment” as part of their field value definition. In all other
fields, parentheses are considered part of the field value.

comment = "(" *(ctext | quoted-pair | comment) ")"
ctext = <any TEXT excluding "(" and ")">

A string of text is parsed as a single word if it is quoted using double-quote marks.

quoted-string = (<"> *(qdtext | quoted-pair) <">)
qdtext = <any TEXT except <">>

The backslash character (”\”) MAY be used as a single-character quoting mechanism only within
quoted-string and comment constructs.

quoted-pair = "\" CHAR

This appendix was copied verbatim from RFC 2616 [7].

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright

43

ESE-RFC-004.0.05
Category: Proposed Community Standard
Updates/Obsoletes: None

Gallagher, Potter, Sgouros, Hankin, Flierl
2005/01/17

DAP 2.0 Standard

notice or references to the Internet Society or other Internet organizations, except as
needed for the purpose of developing Internet standards in which case the procedures
for copyrights defined in the Internet Standards process must be followed, or as
required to translate it into languages other than English.

Appendix B Acronyms and Abbreviations

The following acronyms are used in this text.

BNF Backus-Naur Form

CE Constraint Expression

CGI Common Gateway Interface

DAP Data Access Protocol

DAS Dataset Attribute Structure

DDS Dataset Descriptor Structure

DODS Distributed Oceanographic Data System

DataDDS Data Dataset Descriptor Structure

HTML Hypertext Markup Language

HTTP HyperText Transfer Protocol

MIME Multimedia Internet Mail Extension

SOAP Simple Object Access Protocol

SRS Software Requirements Specification, See IEEE 830–1998

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C The World Wide Web Consortium, See http://www.w3c.org/

XDR External Data Representation

XML Extensible Markup Language

Appendix C Errata

There are no errata for this document.

44

